Descripción
En Sixe Ingeniería llevamos más de 12 años impartiendo formación oficial de IBM en todo el mundo. Obtenga la mejor capacitación impartida por nuestros especialistas en Europa y América Latina.
Datos del curso
Código IBM: KM213GES / KM213G | Categoría / Subcategoría: IBM Infosphere / Quality Stage |
Modalidad: Online y presencial | Duración en días: 4 |
Público al que va dirigido
• Analistas de datos responsables de la calidad de los datos utilizando QualityStage
• Arquitectos de calidad de datos
• Desarrolladores de limpieza de datos
Requisitos previos deseados:
Los participantes deben tener:
• Familiaridad con el sistema operativo Windows
• Familiaridad con un editor de texto
Útil, pero no es obligatorio, sería una cierta comprensión de los principios estadísticos elementales, como los promedios ponderados y la probabilidad.
Instructores
La gran mayoría de los cursos de IBM que ofrecemos están impartidos directamente por nuestros ingenieros. Solo así podemos garantizar la máxima calidad de los mismos. Complementamos todas las formaciones con materiales y laboratorios de elaboración propia, basados en nuestra experiencia durante los despliegues, migraciones y cursos que hemos realizado durante todos estos años.
Valor añadido
Nuestros cursos están profundamente orientados al rol a desempeñar. No es lo mismo las necesidades de dominio de una tecnología para un equipo de desarrolladores, que para las personas encargadas de desplegar y administrar la infraestructura. Es por ello que más allá de comandos y tareas, nos centramos en la resolución de los problemas que se presentan en el día a día de cada equipo. Proporcionándoles los conocimientos, competencias y habilidades requeridas para cada proyecto. Además nuestra documentación está basada en la última versión de cada producto.
Agenda y temario del curso
1. Data Quality Issues
• Listing the common data quality contaminants
• Describing data quality processes
2. QualityStage Overview
• Describing QualityStage architecture
• Describing QualityStage clients and their functions
3. Developing with QualityStage
• Importing metadata
• Building DataStage/QualityStage Jobs
• Running jobs
• Reviewing results
4. Investigate
• Building Investigate jobs
• Using Character Discrete, Concatenate, and Word Investigations to analyze data fields
• Reviewing results
5. Standardize
• Describing the Standardize stage
• Identifying Rule Sets
• Building jobs using the Standardize stage
• Interpreting standardize results
• Investigating unhandled data and patterns
6. Match
• Building a QualityStage job to identify matching records
• Applying multiple Match passes to increase efficiency
• Interpreting and improving Match results
7. Survive
• Building a QualityStage survive job that will consolidate matched records into a single master record
8. Two-Source Match
• Building a QualityStage job to match data using a reference match
¿Necesita adaptar este temario a sus necesidades? ¿Está interesado en otros cursos? Consúltenos sin compromiso.
Ubicaciones para impartición presencial
- España: Madrid, Sevilla, Valencia, Barcelona, Bilbao, Málaga
- Argentina: Buenos Aires, Córdoba
- Bolivia: La Paz
- Chile: Santiago de Chile
- Colombia: Bogotá, Medellín, Cartagena, Cali
- Costa Rica: San José
- Ecuador: Quito
- México: Ciudad de México, Guadalajara, Monterrey
- Paraguay: Asunción
- Perú: Lima
- Portugal: Lisboa, Braga, Porto
- Uruguay: Montevideo