Descripción
En Sixe Ingeniería llevamos más de 12 años impartiendo formación oficial de IBM en todo el mundo. Obtenga la mejor capacitación impartida por nuestros especialistas en Europa y América Latina.
Datos del curso
Código IBM: DW606GES / DW606G | Categoría / Subcategoría: IBM Open Platform / IBM Open Platform |
Modalidad: Online y presencial | Duración en días: 2 |
Público al que va dirigido
Este curso de capacitación intermedio es para aquellos que desean una base de IBM BigInsights. Esto incluye: ingenieros de big data, científicos de datos, desarrolladores o programadores, administradores interesados en aprender sobre la plataforma abierta de IBM con Apache Hadoop.
Requisitos previos deseados:
Ninguno, sin embargo, el conocimiento de Linux sería beneficioso.
Instructores
La gran mayoría de los cursos de IBM que ofrecemos están impartidos directamente por nuestros ingenieros. Solo así podemos garantizar la máxima calidad de los mismos. Complementamos todas las formaciones con materiales y laboratorios de elaboración propia, basados en nuestra experiencia durante los despliegues, migraciones y cursos que hemos realizado durante todos estos años.
Valor añadido
Nuestros cursos están profundamente orientados al rol a desempeñar. No es lo mismo las necesidades de dominio de una tecnología para un equipo de desarrolladores, que para las personas encargadas de desplegar y administrar la infraestructura. Es por ello que más allá de comandos y tareas, nos centramos en la resolución de los problemas que se presentan en el día a día de cada equipo. Proporcionándoles los conocimientos, competencias y habilidades requeridas para cada proyecto. Además nuestra documentación está basada en la última versión de cada producto.
Agenda y temario del curso
Unit 1: IBM Open Platform with Apache Hadoop
- Exercise 1: Exploring the HDFS
Unit 2: Apache Ambari
- Exercise 2: Managing Hadoop clusters with Apache Ambari
Unit 3: Hadoop Distributed File System
- Exercise 3: File access and basic commands with HDFS
Unit 4: MapReduce and Yarn
- Topic 1: Introduction to MapReduce based on MR1
- Topic 2: Limitations of MR1
- Topic 3: YARN and MR2
- Exercise 4: Creating and coding a simple MapReduce job
- Possibly a more complex second Exercise
Unit 5: Apache Spark
- Exercise 5: Working with Spark's RDD to a Spark job
Unit 6: Coordination, management, and governance
- Exercise 6: Apache ZooKeeper, Apache Slider, Apache Knox
Unit 7: Data Movement
- Exercise 7: Moving data into Hadoop with Flume and Sqoop
Unit 8: Storing and Accessing Data
- Topic 1: Representing Data: CSV, XML, JSON, and YAML
- Topic 2: Open Source Programming Languages: Pig, Hive, and Other [R, Python, etc]
- Topic 3: NoSQL Concepts
- Topic 4: Accessing Hadoop data using Hive
- Exercise 8: Performing CRUD operations using the HBase shell
- Topic 5: Querying Hadoop data using Hive
- Exercise 9: Using Hive to Access Hadoop / HBase Data
Unit 9: Advanced Topics
- Topic 1: Controlling job workflows with Oozie
- Topic 2: Search using Apache Solr
- No lab exercises
¿Necesita adaptar este temario a sus necesidades? ¿Está interesado en otros cursos? Consúltenos sin compromiso.
Ubicaciones para impartición presencial
- España: Madrid, Sevilla, Valencia, Barcelona, Bilbao, Málaga
- Argentina: Buenos Aires, Córdoba
- Bolivia: La Paz
- Chile: Santiago de Chile
- Colombia: Bogotá, Medellín, Cartagena, Cali
- Costa Rica: San José
- Ecuador: Quito
- México: Ciudad de México, Guadalajara, Monterrey
- Paraguay: Asunción
- Perú: Lima
- Portugal: Lisboa, Braga, Porto
- Uruguay: Montevideo